Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1.
نویسندگان
چکیده
Aldehyde dehydrogenase 1 (ALDH1A1) catalyzes the oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg(2+) ions decrease ALDH1 activity in part by increasing NADH binding affinity to the enzyme. By using time-resolved fluorescence spectroscopy, we have resolved the fluorescent lifetimes (τ) of free NADH in solution (τ=0.4 ns) and two enzyme-bound NADH states (τ=2.0 ns and τ=7.7 ns). We used this technique to investigate the effects of Mg(2+) ions on the ALDH1A1-NADH binding characteristics and enzyme catalysis. From the resolved free and bound NADH fluorescence signatures, the KD values for both NADH conformations in ALDH1A1 ranged from about 24 μM to 1 μM for Mg(2+) ion concentrations of 0-6000 μM, respectively. The rate constants for dissociation of the enzyme-NADH complex ranged from 0.03 s(-1) (6000 μM Mg(2+)) to 0.30s(-1) (0 μM Mg(2+)) as determined by addition of excess NAD(+) to prevent re-association of NADH and resolving the real-time NADH fluorescence signal. During the initial reaction of enzyme with NAD(+) and butyraldehyde, there was an immediate rise in the NADH fluorescence, due to the formation of bound NADH complexes, with a constant steady-state rate of production of free NADH. As the Mg(2+) ion concentration was increased, there was a consistent decrease of the enzyme catalytic turnover from 0.31 s(-1) (0 μM Mg(2+)) to 0.050 s(-1) (6000 μM Mg(2+)) and a distinct shift in steady-state conformational population from one that favors the ALDH1-NADH complex with the shorter fluorescence lifetime (33% excess) in the absence of magnesium ion to one that favors the ALDH1-NADH complex with the longer fluorescence lifetime (13% excess) at 6000 μM Mg(2+). This shift in conformational population at higher Mg(2+) ion concentrations and to lower enzyme activity may be due to longer residence time of the NADH in the ALDH1 pocket. The results from monitoring enzyme catalysis in the absence of magnesium suggests that the ALDH1-NADH complex with the shorter fluorescence lifetime is the form initially produced, and the complex with the longer fluorescence lifetime is produced through isomerization.
منابع مشابه
Fluorescence Chemosensing of Mg2+ by Phenylhydrazone of a Difluorenylpiperidin-4-one
Magnesium is an abundant element in the environment. Magnesium ion sensing by fluorescence spectral method is of importance due to the need for the detection of the metal in the human body and the environment. In this paper, we report the Mg2+ ion sensing behavior of the phenylhydrazone derivative of a difluorenylpiperidin-4-one. The preparation method of this compound is simple. The compound s...
متن کاملMultiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding.
Two-photon fluorescence lifetime imaging (FLIM) of molecules can reveal important information on the local microenvironment. NADH, an intrinsic fluorescent molecule and ubiquitous metabolic co-enzyme, has a lifetime that depends strongly on enzymatic binding. We present a custom image-processing algorithm for raw fluorescence lifetime and amplitude data that produces an image showing spatially ...
متن کاملMetal ions binding study on human growth hormone by isothermal titration calorimetric method
The interaction of hGH with some metal ions ( ) at 27°C in NaC1 solution, 50 mM was studied using Isothermal titration calorimetry. There is a set of three identical and non-interacting binding sites for binding of all these metal ions, expect . The intrinsic association equilibrium constants () are not very different for and , and also their molar enthalpies of binding (KJ/mol for and KJ/mo...
متن کاملInteraction of Mg2+ with human liver aldehyde dehydrogenase. I. Species difference in the mitochondrial isozyme.
The dehydrogenase activity of the mitochondrial isozyme (E2) of human liver aldehyde dehydrogenase was stimulated about 2-fold by the presence of low concentrations (about 120-140 microM) of Mg2+ in the assay at pH 7.0 using propionaldehyde as substrate. The stimulation was totally reversible by treatment with EDTA. Maximum stimulation was dependent on the concentration of NAD+ used in the assa...
متن کاملEffects of Mg2+, Ca2+ and Mn2+ on sheep liver cytoplasmic aldehyde dehydrogenase.
Sheep liver cytoplasmic aldehyde dehydrogenase is strongly inhibited by Mg2+, Ca2+ and Mn2+. The inhibition is only partial, however, with 8-15% of activity remaining at high concentrations of these agents. In 50 mM-Tris/Hcl, pH 7.5, the concentrations giving half-maximal effect were: Mg2+, 6.5 micrometers; Ca2+, 15.2 micrometers; Mn2+, 1.5 micrometer. The esterase activity of the enzyme is not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemico-biological interactions
دوره 202 1-3 شماره
صفحات -
تاریخ انتشار 2013